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Abstract—This study examines the possibility of controlling through feedback a thin cantilevered beam
subjected to a nonconservative follower force. A converging frequency flutter instability which occurs in
this model is similar to classical bending-torsion flutter of an aircraft wing. Because of the similar nature of
the instabilities, the beam under the follower force can be a useful vehicle for investigating the fundamental
aspects of stabilization of wing flutter by feedback control. A modal approach is used for obtaining the
mathematical model and control laws. A standard root locus technique for simple analytical models is also
used to understand and explain the control of the beam. Experiments are carried out to verify the validity
of this theoretical model. Good correlation is shown between theoretically and experimentally determined
stability boundaries as well as for modal frequency and damping variation with follower force.

NOTATION
A, bending mode coefficients

a,, = A,;. nondimensional bending mode coefficients

torsion mode coeflicients

modal integrals

Young modulus .

torsion modal constant, F? = mrw,2L?GJ

bending modal constant, G,,* = mw,2L*/EI

shear modulus

beam thickness

bending moment of inertia

torsion moment of inertia

non-dimensional frequency = (mw*L*/EI)'"* = G,,2
non-dimensional torsion strain feedback gain = V,Lh/EI
non-dimensional torsion velocity feedback gain = V,J(mEI"?
non-dimensional torsion acceleration feedback gain = V,/mL?
beam length

moment vector

beam density

control force

body force

beam radius of gyration

perpendicular distance from elastic axis to control force
Laplace transform variable

time

bending displacement

bending natural mode

follower force (tip jet force)

feedback loop transfer function

shear force vector

x,y,z coordinate system of undeformed beam

x',y',z" coordinate system of deformed beam

z. position of control force

z, position of strain gage

z, position of accelerometer

v torsion/bending stiffness ratio = GJ/El, also torsion strain
A non-dimensional follower force = V°L* EI
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¢ torsion displacement
¢, torsion natural mode
p non-dimensional radius of gyration = rfL
p. non-dimensional control force moment arm = r,/L
7 non-dimensional time = (EIt/mL*%"?, also body torque
@ frequency
Q,, non-dimensional torsion frequency = (yF,2/p?)"?

Superscript
0 initial load
" ala(zIL)

Subscript

flutter
divergence
displacement
strain
velocity
acceleration

acw AT

1. INTRODUCTION

It is well known that a dynamic instability (flutter) may be induced in elastic systems under a
non-conservative force[1-13]. As one of these problems, wing flutter on an airplane is
extremely important. The prevention of wing flutter by utilizing a controllable force which
responds to feedback signals from motion sensors located on the main lifting surface has
received recent attention. Most of these studies[1, 2] began late in the 1960s and the subject is
still rapidly developing[3]. Many of the earlier studies, however, are of an ad hoc nature and it
has been difficult to assess the meaning and generality of the results obtained.

A simple experimental model with a non-conservative force has been proposed [4-8] in order
to gain insight into the fundamentals of flutter suppression systems. The experiment consists of
a thin cantilevered beam with an air nozzle mounted at its tip parallel to the chord line (Fig. 1).
Not only does this model resemble a thin wing with tip jet, but it also experiences a converging
frequency flutter instability similar to a classical bending-torsion wing flutter. This similarity,
along with the simplicity and flexibility of the experiment compared with a wind tunnel flutter
experiment, gives it a potential use as a prototype for investigating the effect of feedback
control in suppressing flutter of more complex systems.

Dowell and Moon[4] conducted one of the first investigations of this type of flutter
instability in a continuous elastic system. Prasad and Herrmann{9] had investigated this
instability previously without feedback control. The purpose of the study in [4) was to attempt
to suppress or delay the start of an instability in a non-conservative mechanical system using
feedback control. The configuration studied was a torsion strain signal feedback. They
concluded that for flutter instability of a beam under a jet follower force without feedback
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Fig. 1. Schematic of system.
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control there is a good correlation between theory and experiment. However, the omission of a
term in the non-dimensional form of the control equation presented in [4] resulted in the
prediction of an incorrect stability boundary. Dowell, Moon and Kalmbach later added this
missing term to the theoretical analysis and constructed a more sophisticated experiment[5-7].
These improvements indicated that substantial suppression of flutter could be achieved using
only pure gain compensation of a torsion strain signal. At this stage, the feedback loop
configuration consisted of a static type torsion strain signal. Dynamic feedback signals, such as
velocity or acceleration, have been studied more recently[8]. Generally speaking, only a few
systematic studies of feedback systems for flutter suppression can be found in the
literature [3, 15).

The scope of the current research accomplished beyond that described in [7] encompasses
systematic theoretical and experimental studies of the effects on flutter of various control
systems including strain, velocity, and/or acceleration signal feedbacks. The direct purpose is
two-fold. Firstly, the study of a dynamic feedback signal, i.e. torsion velocity and acceleration,
will be done. The effect of the torsion acceleration feedback loop, which is added to the torsion
strain feedback link, on the stability boundary is emphasized. Secondly the behavior of the
beam model below the flutter boundary will be explored. Several techniques without external
excitations have been applied to obtain the subcritical response (3] for a wing using the natural
turbulence in a wind tunnel. In this model, however, the beam itself is not in an air flow.
Therefore the well-known forced response method was used and satisfactory data were
recorded.

2. THEORETICAL MODEL AND APPLICATION OF STANDARD ROOT
LOCUS METHOD TO SIMPLE SYSTEMS

Referring to a differential element of the beam (Fig. 2), the equations for a cantilevered thin
beam are obtained as follows{7, 8],

2
mi’—l}+El"—;+2v‘;"¢+M2 4’ (1a)
ot I r4
ﬂ# GJ8¢+M‘}—2-—T, (1b)

Boundary conditions for this case are

u —-— —_—
u—5—¢—0 at z=0
u_u_¢ _ _
P iy Z—O at z=1L. 2

The basic assumptions underlying eqns (1) are

@ Beam model (chord line is rigid).

@ The beam is initially stressed in the chordwise direction.

@ Displacements u and ¢ are small.

@ The rotational intertia about the y-axis is neglected.

@ Hooke’s law.
Equations (1) are variable coefficient, partial differential equations. These are reduced to

constant coefficient, ordinary differential equations via Galerkin’s method for stability analysis.
Let u,, and ¢, be natural modes in bending and torsion of a clamped-free beam and assume

U=, An()iim(2)
¢ = X, B(t)$u(2). 3)

The functions u,. and ¢, satisfy the boundary conditions (2) as well as the following differential
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(b)
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Fig. 2. Coordinate system.

equations, in which G,, and F, are known constants [' = (3/d(z/L))]:

-Gtu, =0
¢+ F2¢, =0. O]

The following equations are obtained after substituting (3) into (1), observing (4), multiplying
(1a) by u, and (1b) by ¢,, and finally integrating over z.

(n 5 Hoon) [ 104 )23 0. i ()
D38 [ Mo (7)= [ s (f)
(mrszf;wg-fF’B)f 824(E)+ 2 An IM?(“M (2

= J, .4(3) ©

Follower and control forces must be specified to model the experimental configuration
studied. First, the follower force is located at the tip of the beam, so

V=V, M2=V%:z-L). )
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The control force, Q, which is assumed as a point force, depends on feedback laws. Thus

g = Q86(z~2.), 7.=-rQb(z-z) (7Ta)
where
Q=Vuy(z))=V,.2 % ¢'(z,)  (torsion strain feedback)
or
B(2) (torsion velocity feedback) (Tb)
or
= V.$(z.). (torsion acceleration feedback).

Substituting (6) and (7) into (5) and non-dimensionalizing as noted in the Notation, one obtains

(d %+ K.'ay) Clan + A 3 B,

= kuty(2c) 2 Bz, (strain feedback)
= kytty{2:) 2 ar = be(2,) (velocity feedback)
&’B .
= kaun(2.) 2 3 &(24) (acceleration feedback) (8)

(%%‘-+ 0B,)C2+ 2% 3, 0nCoum
T P

=K g‘z ¢,(z.) 2 Bz (strain feedback)
=k, £2¢s(zc) 2 3 =+ ¢.(2,) (velocity feedback)

=k, %% FXEAD %—?{ &(2.) (acceleration feedback)

where the modal integrals C1, C2, C8 and C9 are defined in Ref. [8]. When structural damping is
included of the viscous type, the terms 2{,K.(da,/dr) and 2{,Q,(dB,/dr) are added into the
parentheses on the Lh.s. of (8).

Equations (8) are now a system of ordinary differential equations for the a,(= A,/L) and B,,
the coeflicients of the natural modes defined in (3). The characteristic determinant of the
Laplace transformed equations shown above is used for the dynamic stability analysis of this
problem. If one of the real parts of the characteristic roots becomes positive, diverging unstable
motions occur for the system.

Before presenting numerical and experimental studies for specific cases, a graphical root
locus technique is employed to select promising model configurations and parameter variations.
This classical standard root locus method is applicable when a three mode, no structural
damping model is assumed since the characteristic equation can be reduced to the 1+KG =0
form and higher powers of K do not appear. The three modes retained are the first two bending
and lowest torsion. The characteristic equation for torsion strain feedback system is

2
A= CinClnCZu(Sz'i" Kf)(sz + Kf)(sz + ﬂ|2} - 'Aj{cs;\anCln(Sz + ng)
+ CBC9aClu(s™+ K+ b i (o CuC L os™+ K+ KD

+ MC9:Clnu(z:)(s* + K + C9|2C1uuz(lc)(s + KH)
= Bpenm,jer(8: A%) + keBeonrai(s, 1) = 0. ©)
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The present problem can be cast into an equivalent root locus form[14]. Thus the hypo-
thetical open-loop transfer function for (9) is

N(s%, 1)

sz‘C—TTD(s )

(10)
where k,: nondimensional torsion strain feedback gain

C = ¢;(Zs) pc¢l(zc) = constant

[ C2y,

2) —)2 C811C911C122(S2 + K22) + C8|2C912C1“(82 + K12)
P*C1iClnC2

C9:uClnui(zc)(s* + K2D) + C912C Lyyun(z (s> + KP
chIIICln¢1(Zc) '

D(s, A% = (s*+ K)(s* + K2 )(s* + 4

N(s,A)=(s>+ K)(s*+ KP)+A

As may be seen, the poles and zeros of the open loop transfer function depend upon the
follower force A. By examining these movements and locating them on the s-plane for a certain
A, one can study the influence of k, to this system.

First, the denominator is the characteristic equation for the beam-follower force system
without feedback control. One can check the roots of D by reducing this to the root locus form
again

_ 2~ Na_ 2 s+ Ay
1+Gd—1+/\ CdDd_1+A Cd(s2+K12)(s7+K7)(S7+Q1T)

=0 (11

where
_ C8,1C9:Cln+ C81,C9,C1y,
C1,,C1,,C2,

A — C811C911C122K22+ C812C912C1|1K12
4 C8,,09,,Clp+ C8,C9,C1,,

Cd=

In the same way as for D, the roots of N can be obtained in the following root locus;

N, _ 2+ A, 3
l+G,.—l+AC,,Dn—1+AC,,(S7+K?)(ST+KZT)—0 (12)

where

= C9:Clpui(z:) + C12C 1y uxA2,)
p.C1uClndy(z)

A = C9uClnuy(z)K? + C9nCluuyz) Ky
" C911Clnu(z.) + C9Clunun(z) -

Cn

Once the poles and zeros of (10) for some Ag,q are obtained, the required solutions of (9)
are derived by applying the root locus procedure to the problem for G.

The above method is applied to two specific cases, that is, the control force locations
zy1 =0.3 and 0.9. z,, = 0.9 was chosen because it represents the best intuitive choicet for
control placement. z;; = 0.3 was chosen because at this station the greatest stable variation of
k, at high A was recorded in[6, 7].

Figure 3, where z,;; = 0.3, shows system pole and zero migrations for the follower force
variation. This model with no control force goes into flutter at A = 13.9. In order to examine the

tIt is intuitive in the sense that the first bending and torsion modes exhibit their maximum displacements near the tip of
the beam.
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Fig. 3. Pole and zero loci for G; and G,(zy =0.3).

effect of the feedback loop, a certain unstable condition is selected, say A = 18.0. Once the
locations of poles and zeros for A = 18.0 are specified in Fig. 3, the root locus for the total
system with torsion strain feedback is obtained as shown in Fig. 4. This system recovers
stability at k, = 8.5. As the feedback gain k; is increased further, one of the stabilized branches
is merged with the third mode branch and loses stability again at k, = 21.4 in the form of flutter
with a higher frequency. The other stabilized branch undergoes divergence at k, = 250.

As the next step, a first order lead compensation is considered, which means the addition of
a velocity feedback. In this case one can easily conclude that there is no way of stabilizing the
fluttering roots. Since N/D in (10) is always a real number for any value on the imaginary axis
in this system without structural or aerodynamic damping, it is impossible for odd order
compensation to satisfy the 180° angle condition for the root locus on the imaginary axis except
at the origin. Even if two unstable roots merge together on the positive real axis and one of
them enters into the stable left half plane through the origin, the other branch stays in the right
half plane. This means that unstable roots can never return to the left half plane or imaginary
axis in the s-plane. The introduction of velocity feedback does not work at all in this particular
system. A root locus example using pure velocity feedback of torsion strain is shown in Fig. 5.

Careful inspection of Fig. 4 suggests one interesting feedback compensation. If zeros are
placed between the point where the unstable root comes back to the imaginary axis and the
highest frequency pole, the higher frequency flutter can be perfectly suppressed in this three
mode analysis. This compensation is a combination of strain and its acceleration. A root locus
plot is shown in Fig. 6.

The other control force location studied is z,; = 0.9. Figure 7 shows system pole and zero
migrations for the follower force variation. The pole locus in Fig. 7(a) is essentially the same as
that in Fig. 3(a). The change of the wire coils’ weight location results in a slight pole locus
difference between them.t The zero locus in Fig. 7(b), however, is quite different from Fig. 3(b).

tSee discussion of experimental apparatus in following section.
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Fig. 5. Root locus for sG(s, A = 18) (2. =0.3).

Figure 8 is the system root locus for k, at A = 18.0. The unstable root is stabilized at k, = 5.9
and goes into a divergence instability at k, = 10.6 instead of high frequency flutter. This
difference between Figs. 4 and 8 clearly comes from zero locations. The zero on the imaginary
axis in Fig. 4 is above the pole and the zeros on the real axis are much closer to the origin in
Fig. 4. This reversal of the pole and zero locations on the imaginary axis in Fig. 8 brings no
possibility of high frequency flutter. By contrast, divergence in Fig. 8 is induced rather easily
due to zero locations on the real axis far away from origin. Velocity feedback does not work for
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the same reason discussed earlier. Even acceleration feedback is not beneficial in this
configuration since zeros on the real axis easily induce divergence at infinity (Fig. 9).

As long as only a first torsion mode is assumed in the numerical analysis, torsion strain and
displacement are equivalent because they are both in the same phase along the span, and are
connected by a proportional relation. If more than two torsion modes are assumed in the
analysis, this simple relation between them fails in general.

3. NUMERICAL AND EXPERIMENTAL STUDIES
As a result of root locus analysis, it is known that the introduction of acceleration feedback
in addition to strain signal may suppress or delay the high frequency flutter at the control force
location z;z = 0.3. The studies in this section investigate this configuration in more depth.
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3.1 Computer model

The computer programs used are described in detail in [8]. Figure 10 is an example of
stability boundaries, which show the effect of the number of assumed modes and structural
damping. A change from a diagonal to a full mass matrix introduced in the current theoretical
model permits prediction of the divergence boundary which was missed in the earlier theoreti-
cal analysis[6, 7]. That is, in the present analysis full mass coupling due to localized masses of
tubes, accelerometers, etc. is accounted for with the stiffness inferred from measured natural
frequencies{8]. A convergence study using various numbers of modes showed that a nine mode
model is required for accurate determination of the divergence boundary. Inclusion of struc-
tural damping is also important for the prediction of the low frequency flutter boundary. A nine
mode, structural damping model would give better accuracy than those in Fig. 10, but it takes
an enormous amount of calculation time.

30?—
————— 5 MODE WITH DAMPING

— --—5MODE NO DAMPING

9 MODE NO DAMPING "

0 EXPERIMENT )

20F . \
.
4
r'd
.

DIVERGENCE

- —
25Hz —
L7Hz
16 Hz!
AUTTER
[
UNSTABLE
1 1 "
0 10 20 s

Fig. 10. Damping effect on stability boundary (z;, = 0.9).

For the sake of consistency, all theoretical curves for stability boundaries are the products
of the nine mode, no structural damping model. A five mode, structural damping model is
employed for frequency and damping variation with follower and control forces in Section
3.3.2.

3.2 Experimental apparatus

The details of the experimental apparatus are discussed in [7, 8]. Figure 11 is a picture of a
beam specimen. Strain gages are mounted near the root of the beam and wire coils and
accelerometers near the tip. To preserve mass and stiffness symmetry about the mid-chord axis
two tubes, two pairs of wire coils, etc. are used. On both sides of the second (active) pair of
coils are cylindrical permanent magnets clamped to a retort stand. The output of the torsion
strain gage bridge and/or accelerometers is connected to the wire coils on the beam through
electronic amplifiers, one an operational signal amplifier and the other a bipolar power
amplifier.t Attached to the tip of the beam is the nozzle which is connected to two pieces of
plastic tubing. The left hand tube delivers the air to the nozzle from an air compressor.

Two linear accelerometers were employed to obtain a torsional acceleration of the beam
motion. Each was placed on the opposite side of the plate at the same spanwise location. The
arm length of the accelerometers from the midchord line is the same as that for the wire coils.
Two acceleration signals from both sides of the plate are added together, which cancels the

tA band pass filter to avoid d.c. drift is also employed which is the limiting factor on the electronic performance of the
system. Measurable phase shift is present above 10 cps; no gain degradation is observed, however|[8].
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STRAIN
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TUBING

NOZZLE

Fig. 11. Experimental apparatus,

pure bending acceleration component of the beam motion and extracts the pure torsion
acceleration component. A torsion velocity feedback signal is obtained by integrating the
torsion acceleration signal from the accelerometers on the beam.

3.3 Correlation of numerical results and experiment

3.3.1 Stability boundaries. The merit of a control system configuration can be determined
with the aid of jet force, A, vs active feedback gain, &, stability curves. Close agreement
between the theoretical predictions and actual observations indicates a good understanding of
the manner in which the application of feedback control affects the system stability boundary.

(a) Torsion acceleration and strain feedback

Figure 12 shows both the experimentally and theoretically obtained stability boundaries for
the control force location zy; =0.3 and the accelerometer location z,; =0.95. A is a nondi-
mensional follower force parameter, &, is a torsion strain feedback gain, and k, is a torsion
acceleration feedback gain. Figure 12(a), where k, is zero, has been studied in [5-7). Figure
12(b) presents the effect of k,. Correlations between theory and experiment in these figures
show reasonable agreement. Especially the effect of the torsion acceleration feedback on the
torsion strain feedback configuration is well confirmed. There exists a 5~ 35% difference
between theory and experiment for the low frequency flutter boundary. Theory is always
non-conservative for this boundary. This is attributed mainly to the neglect of the structural
damping effect. It is known that the inclusion of the structural damping is
destabilizing[8, 10, 11], that is to say, lowers the theoretical flutter boundary for this non-
conservative system. If even the five mody model including structural damping effect is
employed for the theoretical boundary, the gap between theory and experiment can be
narrowed (Fig. 10). The descrepancies for the divergence boundary possibly come from the
sluggish convergence of this portion of the theoretical boundary with increasing number of
assumed modes (Fig. 10). Other possible causes of the error are discussed in Ref. [8].

The control system is evaluated not only by the achievement of the highest stability
boundary, but also by the stability area. In other words, the system which gives rise to simple
stability boundaries is superior to that with complex stability boundaries even if the highest
stability boundaries are the same{12]. For example and by contrast, in the system in Fig. 12(a),
the feedback gain must be adapted to obtain its highest stability boundary. Instability is induced
by increasing the follower force when the gain is not programmed to reach the peak of the
stability boundary from the zero follower force condition. If the torsion acceleration signal as
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Fig. 12. Stability boundary (z.;, = 0.3, z4. = 0.99).

well as strain signal is concurrently fed back as in Fig. 12(b), this unfavorable high frequency
flutter region is pushed to the right and the stable area is widen. In Fig. 12(b), there is no
unstable region beneath the highest stability point for the experimental results and hence no
need for gain programming to reach this point.

The merit of the addition of the acceleration feedback loop is shown impressively by a time
response of the system. Figure 13(a) shows the measured time response of the configuration with
torsion strain feedback only. Although the torsion strain k, =3 suppresses the low frequency
flutter at A = 11.0, the same amount of increase in k, at A = 1.0 induces a violent high frequency
flutter phenomena into the initially stable system. When the acceleration feedback loop is also
closed at the same time (Fig. 13b), the high frequency flutter is perfectly suppressed while no
serious changes in the low frequency flutter suppression are evident.

The low frequency flutter and divergence boundaries are less sensitive to the addition of the
torsion acceleration feedback link. Theoretically, divergence must be insensitive to this feed-
back. If this discussion is extended to the case for the control force location z, = 0.9, where
stability boundaries consist of only low frequency flutter and divergence, one cannot expect
great improvement of the system by the addition of acceleration feedback. Figure 14 confirms
this expectation. Experimental error may have caused the slight difference among divergence
boundaries when k, is changed. For these stability boundaries at z,; = 0.9, the acceleration
feedback addition brings no fruitful results.

(b) Torsion acceleration feedback

Figure 15 is an example of stability boundaries for pure torsion acceleration feedback. The
system is stable under or within the curve. All the stability boundaries are flutter phenomena.
Since the acceleration feedback does not modify the constant term of the characteristic
polynomials, divergence does not take place by the addition of k, unless the stability boundary



834 H. HORIKAWA et al.

TORSION STRAIN GAGE OUTPUT
OPEN LOOP FLUTTER (kg=0)

I
T 11 1 ! CLOSED -LOOP
1 T1T o ?lkO_F;;JTTER
A=11.0 F s '
i I ACTIVE CONTROL
i T e O o e vt St 0 U O W SYSTEM TURNED ON
R - ' L (kg=3)
410 secono
TIME —» CLOSED - LOOP
/ | FLUTTER(ky=3)
_ J77} oPeN-LooP
; ] NO FLUTTER
T 1 :Iﬂ
2=1.0
K& 1
i - L -
OPEN ~LOOP !
NO FLUTTER

(a) ACCELERATION FEEDBACK LOOP OPEN (PHASE 2 ,kq=0)

FLUTTER (kg=0) NO FLUTTER (kg=3)
71_,[ 177 T i
ig P
- ; YVR ..I'j-:
A= 110 ARG Ao
L1 , 111 i1
BN T \ i
v (BN Y 2 4
NO FLUTTER (ks=0) NO FLUTTER (kg4=3)
[ ¢
i 3
H I
I
A=1.0 _
I 1
[

(b) ACCELERATION FEEDBACK LOOP CLOSED (PHASE 3,kq=0.054)

Fig. 13. Time history trace showing effective operation of flutter suppression system.

at k, =0 is divergence. This case introduces new very high frequency flutter boundaries. The
correlation between theory and experiment is relatively poor. The following reasons may
explain this situation. Theoretically, well-converged boundaries for such high frequency
phenomena cannot be expected using even a nine mode analysis because the highest natural
frequency of the ninth mode is around 90 cps. Furthermore, the phase shift of the bandpass
filter in the feedback loop becomes significant when the frequency is over 10 cps. This effect is
not simulated in the theoretical model since a pure gain feedback system is assumed for the
sake of simplicity. Experimentally, these high frequency boundaries are very sensitive to the
experimental details. For example, a slight misalignment of the gap distances between the
permanent magnet and the wire coil can easily result in a relatively large flutter boundary
difference.

The low frequency (~1.6 Hz) flutter boundary, which is the most crucial in this problem, is
not improved a great deal in these experimental results. By contrast, very high frequency
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(25 ~ 160 Hz) flutter boundaries have a steep slope. This is due to the nature of acceleration
signal that is propertional to the displacement times the square of the frequency of the motion.
The flutter boundaries higher than 10 Hz are detected only by the violent diverging oscillation
of the feedback electrical signal, but not by the beam motion itself. On the contrary, the
boundaries with about 1.6 and 7 Hz can be detected by eye.

(c) Torsion velocity feedback

For completeness in the study of systems with a dynamic feedback signal, a torsion velocity
feedback system is examined in this section. One representative example for this type of
feedback is shown in Fig. 16, where z,; = 0.3, z,; = 0.95. The agreement between theory and
experiment is in general good. Three types of stability boundaries exist in the figure. The upper
stagility boundary in this figure is limited by a low frequency flutter which is caused by a
frequency convergence between the first bending and torsion branches. The left hand side
stability boundary, where the torsion velocity feedback gain k, is negative, is bounded by the
loss of damping of the first torsion dominated motion. On the contrary, the right hand side
boundary is explained by the loss of damping of the second bending branch.

An experimental maximum increase in the follower force required to cause flutter, by the
pure torsion velocity feedback, is about 10% compared to a non-feedback system. Although the
pure torsion velocity feedback itself is better than the pure acceleration feedback, this amount
is much less than that in the pure torsion strain feedback system. Velocity feedback is one of
the intuitive ways to stabilize systems in the sense that damping is added to them. However, in
this specific problem, velocity feedback is less effective than the strain feedback as was
suggested by the earlier root locus analysis.

3.3.2 Frequency and damping variation with follower and control forces. A useful check on
our basic understanding of the system is to correlate the results of experiment with theory in as
much detail as possible. Experimental data for frequency and damping variation prior to the
onset of flutter (subcritical conditions) are rare in the literature and the present data provide an
almost unique opportunity for experimental-theoretical correlation. This represents the most
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Fig. 16. Stability boundary (torsion velocity feedback) (z.;, = 0.3, z,;. =0.9).
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complete correlation possible with theory and demonstrates the effectiveness of the flutter
suppression system. Most of the experimental data are obtained by a forced response half
power method [8]. Sophisticated data reduction techniques such as those discussed in Ref. [3]
were not required in the measurement since external excitation was easily applied to this
experimental model. Although Ref. [3] measured the damping variation of the least damped
mode (i.e. critical mode) in a wind tunnel, the characteristics of the other roots were not
recorded experimentally.

(a) Follower force only
In Fig. 17, where z4 = 0.3, z,,. = 0.95, experimental and theoretical results are given for a

beam-follower force system without active feedback. They are presented in the form of root
locus plots on the complex s-plane. The correlations are excellent, except for the first bending
branch, where the experimental damping data are less accurate[8]. Error bars come from
uncertainty in the measurement of the amplitude response to determine the damping ratio.

The first bending and torsion branch frequencies approach each other gradually with
increasing follower force. Here the instability of the first bending branch is clearly indicated by
its crossing the imaginary axis from negative to positive Re(s). This branch becomes unstable
while the damping ratio of the first torsion branch simultaneously increases very rapidly.

(b) Torsion acceleration and strain feedback

Figure 18 is for one of the best systems with active feedback control. In this particular case
torsion strain gain k, = 5.0 and torsion acceleration feedback gain k, = 0.054 are selected. The
first experimental bending mode frequency is seen to decrease steadily with follower force up
to a point roughly 35% below critical. Then this frequency begins to increase, while the first
torsion branch frequency decreases. This first bending branch frequency decrease with A (prior
to flutter), before eventually increasing, results in about a 40% flutter boundary increase.
Theoretical results for frequency variation (Fig. 18) also show the decrease in the first bending
mode frequency prior to flutter. Since the addition of the feedback loop increases the possibility
of the experimental error, correlation between theory and experiment in these figures is slightly
worse than in the case of follower force only. Nevertheless, the general tendency of their
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Fig. 18. Root locus with follower force (with active control) (z,;. = 0.95, 2 = 0.3, k; = 0.054, k, = 5).

variation is still well-predicted theoretically. In particular, the root locus of the first bending
branch in Fig. 18 shows the nature of this feedback system vividly. The introduction of the

feedback increases the follower force flutter boundary by 42% experimentally and 44%
theoretically.

4, CONCLUSIONS

(1) An increase of follower force required for flutter of over 40% without gain adaptation
has been recorded with a combined feedback system of torsion strain and acceleration. This
type of instability can be effectively controlled by delaying the frequency convergence between
the participating modes. Even order feedback compensations, such as strain or displacement,
and acceleration, govern the vertical movement of the characteristic roots along the imaginary
axis on the s-plane. Extensive and good correlation between theory and experiment is shown.

The selection of the feedback signal, strain or acceleration, must be made based upon the
frequency characteristic of the flutter to be suppressed. For the low frequency boundary, the
strain feedback will work effectively. On the other hand, the high frequency flutter will be
controlled more easily by the acceleration feedback.

(2) Odd order (velocity) feedback may give only modest improvements or be ineffective in a
lightly damped system which exhibits strong converging frequency flutter,

(3) As was indicated in [1], the placement of system zeros, which are the values of the roots
when the feedback gain is infinity, is important. These must be placed so that roots exit
properly from system poles which are the values of the roots when the gain is zero.

(4) Any active feedback system must be carefully designed in order not to induce new
unfavorable instabilities due to its application. A skillful application of both displacement (or
strain) and acceleration feedback may give rise to almost independent control of two flutter
boundaries with different frequency characteristics.

A parallel study of bending-torsion wing flutter including an experimental wind tunnel
investigation is now being undertaken{13}.
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